Example: Two-Tail Test A pharmaceutical company claims that each of its pills contains exactly 20.00 milligrams of Cumidin (a blood thinner). You sample 64 pills and find that the sample mean \overline{X} =20.50 mg and s = .80 mg. Should the company's claim be rejected? Test at α = 0.05. Formulate the hypotheses H_0 : $\mu = 20.00 \text{ mg}$ H_1 : $\mu \neq 20.00 \text{ mg}$ Choose the test statistic and find the critical values; draw region of rejection Test statistic: Z At $\alpha = 0.05$, the critical values are ± 1.96 . Use the data to get the calculated value of the test statistic $$Z = \frac{20.50 - 20.00}{\frac{.80}{\sqrt{64}}} = \frac{.50}{.10} = 5$$ [$.80/\sqrt{.64} = .10$ This is the standard error of the mean.] ▶ Come to a Conclusion: Reject H₀ or Do Not Reject H₀ The computed Z value of 5 is deep in the region of rejection. Thus, Reject H_0 at p < .05