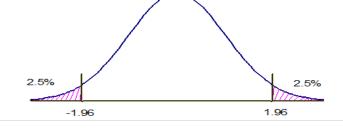
Example: Two-Tail Test

A pharmaceutical company claims that each of its pills contains exactly 20.00 milligrams of Cumidin (a blood thinner). You sample 64 pills and find that the sample mean \overline{X} =20.50 mg and s = .80 mg. Should the company's claim be rejected? Test at α = 0.05.


Formulate the hypotheses

 H_0 : $\mu = 20.00 \text{ mg}$ H_1 : $\mu \neq 20.00 \text{ mg}$

Choose the test statistic and find the critical values; draw region of rejection

Test statistic: Z

At $\alpha = 0.05$, the critical values are ± 1.96 .

Use the data to get the calculated value of the test statistic

$$Z = \frac{20.50 - 20.00}{\frac{.80}{\sqrt{64}}} = \frac{.50}{.10} = 5$$
 [$.80/\sqrt{.64} = .10$ This is the standard error of the mean.]

▶ Come to a Conclusion: Reject H₀ or Do Not Reject H₀

The computed Z value of 5 is deep in the region of rejection.

Thus, Reject H_0 at p < .05